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Using a combination of statistical mechanics and finite-element interpolation, we develop a coarse-
grained (CQG) alternative to molecular dynamics (MD) for crystalline solids at constant temperature.
The new approach is significantly more efficient than MD and generalizes earlier work on the quasi-
continuum method. The method is validated by recovering equilibrium properties of single crystal
Ni as a function of temperature. CG dynamical simulations of nanoindentation reveal a strong
dependence on temperature of the critical stress to nucleate dislocations under the indenter.
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Many processes involving the physics and chemistry of
materials result from microscopic interactions between
the constituent atoms. As a result, molecular dynam-
ics (MD) simulations pervade the literature of a variety
of materials-related disciplines. Despite ever-increasing
computer power, large-scale atomistic simulations remain
computationally demanding, resulting in the continued
effort to seek alternatives which permit the examination
of larger spatial domains or longer time scales.

An important step in this direction has taken place in
recent years with the development of a variety of multi-
scale methods which combine atomistic simulation with
coarse-graining schemes ([1, 2]). These methods exploit
the fact that in many cases the critical dynamics may in-
volve a relatively small subset of the entire set of atoms
with the remainder of the atoms serving primarily to
guarantee appropriate boundary conditions for the re-
gion of interest. One example is the quasicontinuum
(QC) method, a zero-temperature energy minimization
technique, which significantly reduces the total number
of degrees of freedom that must be considered when sim-
ulating the deformation of crystalline solids [3]. In this
method an approximation to the total potential energy is
obtained by making use of finite-element constraints to
remove atoms where the deformation field varies slowly
on the scale of the lattice parameter. An attractive fea-
ture of this approach is its “seamlessness” in that the
same underlying atomistic model is used in the energy
calculations in both the coarse-grained (CG) and fully-
atomistic regions.

The aim of this paper is to extend the QC method
to treat the dynamics of systems at constant tempera-
ture. This procedure is based on ideas drawn from com-

putational statistical mechanics and is tied to the use
of the Nosé-Poincaré thermostat. The atomistic regions
obey the usual equations of motions at finite temperature
leading to an appropriate description of detailed atomic-
scale events. On the other hand, in regions not subject
to severe deformations, a significant number of degrees of
freedom are integrated out assuming local thermal equi-
librium. We assess the validity of the method by compar-
ing the temperature dependence of the lattice parameter
of the CG system with a fully atomistic model which
serves as the gold standard for the method. In addition,
we use the method to study the temperature dependence
of dislocation nucleation during nanoindentation.

Consider a system of N atoms whose positions are de-
noted by {q}. We assume the potential energy of the
system V ({q}) can be written as the sum of the energy
E; ({q}) of each individual atom . As shown in Fig. 1, we
split the atom population (N atoms) between so-called
representative atoms (repatoms), characterized by posi-
tions {q"}, which are the atoms that we will consider in
our simulations and constrained atoms with coordinates
{q°}. We define N, as the number of repatoms and we
will refer to this system as the CG system. The design
criterion for the CG dynamics is the requirement that
the CG system behaves as closely as possible to the full
system at finite temperature. This raises the question of
which metric to use to assess the success of the CG sys-
tem as a surrogate for the all-atom system. One criterion
that we impose is the requirement that the time-average
of any observable A (designated as A) that depends only
on the positions of the repatoms {q"} be equal to the
time-average that would be found for this observable in
a full atomistic and canonical system at equilibrium. As-



FIG. 1: We split the atom population between representa-
tive atoms (large circles on the figure) and constrained atoms
(small gray circles). The average position of the latter are es-
timated from the position of the former using finite-element
interpolation. Among the repatoms, we make a distinction
between non-local atoms (black circles) whose energy only
depends on repatoms (as shown by the dashed circle whose
radius equals the cutoff distance of the interatomic poten-
tial), and the local atoms (white circles) which interact with
constrained atoms.

suming equality of time and ensemble averages, this con-
straint can be stated as

A ({d"Nee = A ({qr})N,V,T =(A ({qr}))N,V,T7 (1)

where (A) is the ensemble average of A. The Hamiltonian
of the canonical CG system is constructed as follows. We
first write the potential energy of the complete system
as V ({d"},{q°}) with the coordinates divided into the
representative and constrained sets. Following [4], we
define the CG potential energy as

Vo ({47}, 8) = —%m / e AVUT A D a(gc},  (2)

where § = 1/kgT. This ansatz is the mathematical em-
bodiment of our coarse-graining principle. In particular,
it guarantees that the repatoms fulfill the injunction im-
plied in Eq. 1. The Hamiltonian of the CG system is

g = S 2D :
Hea ({d"}{p"}B) = Z 5 T Vea ({d'}0),

i=1
where p} = m]q] are the momenta of the repatoms and
m] are their effective masses. The effective masses are
obtained from the conditions that the total mass of the
CG system equals that of the full-atom system, >, m] =
Nm, and that both systems have the same momentum
free energy Fj,

F 1, ﬁ(zwmg)m’ 1 (27rm>3N/2
p= —3m 2 =z 2 ’
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where h,, is an arbitrary constant with dimensions of mo-
mentum [5]. These requirements are satisfied identically
if hy, = y/2mm/af and the effective masses are taken to
be m? = o™ ~!'m, where n; is the number of atoms repre-

sented by repatom i and « is obtained from the solution
of the equation, Zfi’l a1l =N.

While the choice of whether or not an atom should
be representative remains ad-hoc, it is based upon two
criteria. First, the atoms in or directly surrounding the
regions of interest should all be representative in order
to ensure equations of motion which are the same as
those for the full-atom system. Second, the distribution
of repatoms in the CG regions should be adapted with
the evolving displacement field in order to make the cal-
culation of Vog ({q"}, B) as accurate as possible.

In order to construct a dynamics for the repatoms
which allows for the simulation of systems in contact
with a thermal reservoir, we follow Nosé in introducing a
virtual microcanonical system (N, + l,V,fIcg) that will
mimic our canonical system [6], though now applied to
the set of repatoms rather than all of the atoms. For
definiteness, we designate the coordinates of the virtual
system by . In addition, we use a Poincaré time trans-
formation to avoid a distinction between the time ¢ gov-
erning the virtual system and the real system (¢t = {)
while maintaining Hamiltonian dynamics [7]. We define
the following virtual Hamiltonian

N ~p\2 )
foa (&'} 45™)5.50) = 5 [Z o+ ;’—g)]

i=1

+ [VCG (ORI —Ho] ,

where § and p, are respectively the position and momen-
tum of an effective mass () associated with the thermal
reservoir. q" and p” are the positions and momenta of the
repatoms in the virtual system with the effective masses
remaining unchanged. Hj is a constant which is chosen
such that Hog equals 0 at time £ = 0. The value of g
is taken as N,d (where d is the number of dimensions of
the system). Following Nosé’s original demonstration [6],
it can be shown that this virtual microcanonical system
(N, + I,V,I;ICG) is equivalent to our CG canonical sys-
tem by using the following relations, q7 = @7, p} = P /s.
Just as is found in the all-atom analog of the current dis-
cussion, it can be shown that averages in the microcanon-
ical N, + 1 degrees of freedom system implies canonical
averages for the nodal degrees of freedom as

A ({QT})N,H,V,}‘I =A ({qr})N,V,T =(A ({qr}))N,V,T‘

This ensures that Eq. 1 is respected.

Equations of motions can now be derived from the
Hamiltonian Hcg. These equations can be integrated
in turn using a time-reversible symplectic algorithm [8].
It should be noted that the resulting equations of motion
for atoms in fully-refined regions are identical to those
of a full atomistic and microcanonical simulation with
an additional damping/accelerator term which maintains
the system at the correct temperature.

Although the description given above is formally com-
plete, we must still address the question of how to im-
plement these ideas numerically. Here we appeal to the



QC formalism [3] to describe the configuration of the
system and to compute the CG potential Vog ({q"}, 8)
as given by Eq. 2. As in previous work, we lay down
a mesh between the repatoms and decompose them into
two sets as shown in Fig. 1. The non-local atoms (NL) are
the atoms located in fully-refined regions which do not
interact with any constrained atoms. Their individual
contribution E; ({q"}) to the CG potential can be calcu-
lated exactly based on the positions of the surrounding
repatoms as one would do in regular MD.

On the other hand, local atoms interact with the con-
strained atoms in their vicinity. In principle, their con-
tribution cannot be considered individually and requires
tedious integrations over all the possible positions of the
constrained atoms. However, we can take advantage of
the smoothness of the strain field in the CG regions and
invoke the Cauchy-Born rule [3]. The CG potential en-
ergy in Eq. 2 can then be decomposed into a non-local
part and a local part written as a sum over CG elements,

Vee (a8 = ) Ei Z—ln / —BVHahiai) g{qc).

i€ENL

Here {q}} and {q¢} are respectively the local repatoms
defining element e and the constrained atoms within this
element. More precisely, the contribution of each ele-
ment is taken equal to that of an infinite crystal undergo-
ing a uniform deformation characterized by the deforma-
tion gradient F, calculated from the displacements of the
repatoms delimiting the element. For completeness and
computational efficiency, we appeal to the local harmonic
approximation suggested by LeSar [9, 10] to calculate the
energy associated with each element. In this approxima-
tion, the CG potential energy can be calculated as

ZE—i-Z neU 2ﬂln

where n, and n¢ are respectively the total number of
atoms and the number of constrained atoms in the ele-
ment e. U (F,) and ||D (F,) || are respectively the energy
and the determinant of the dynamical matrix of an atom
embedded in an infinite perfect crystal subject to a uni-
form deformation gradient F, at 0K.

The Nosé-Poincaré dynamics was implemented in the
original version of the QC code that can be downloaded
at www.qcmethod.com. The simulations are essentially
2D with periodic boundary conditions in the out-of-plane
direction in order to mimic a 3D system. In Fig. 2 we
compare the the equilibrium lattice parameter of a defect-
free single crystal obtained in the local regions with reg-
ular MD. The QC method gives similar results to those
found using MD with a difference ranging from 0% at 0 K
to 0.5% at 1000 K. The degradation of the results with
increasing temperature is not surprising as anharmonic
effects also increase [10]. The discrepancy between the
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FIG. 2: Lattice parameter of Nickel as a function of tem-
perature using an EAM potential [11]. The QC calculation
involved a cell of dimensions 200 nm x 100 nm with a reg-
ular mesh containing 50 nodes. The lattice parameter was
calculated as an average over the dimensions of the cell.

two models is small relative to the standard deviation
of atoms from their equilibrium positions (measured in
the MD simulation) which range from 1.5% of the lattice
parameter at 200 K to 5% at 1000 K.

As a study of the instantaneous behavior of the
method, we investigated the temperature dependence for
the threshold of dislocation nucleation during nanoinden-
tation. This is an excellent application involving at once
localized effects under the indenter and long range effects
due to elastic deformation fields. One of the features of
nanoindentation experiments that make them especially
appealing for multiscale simulations is that the experi-
mental systems remain larger than the biggest cells that
can be handled by MD creating a possible source of mis-
interpretation about the onset of dislocation activity [12].
Previous atomistic simulations have mostly been limited
to zero temperature or small system sizes [13-18]. The
use of the QC method is therefore compelling since it
leads to a reduction in computational overhead that may
permit in the future the direct simulation of experimental
geometries at finite temperature. In the present work, a
single crystal of Ni with dimensions 200 nm x 100 nm
was indented by a cylindrical indenter of radius 7 nm at
temperatures ranging from 0 K to 400 K (see Fig. 3).
The indentation direction coincides with the preferred
slip direction [110], the horizontal direction is [111], and
the third direction is [112]. The mesh used in this sim-
ulation was fully-refined beneath the indenter to allow
dislocation nucleation and contained about 3000 nodes
(compared with 790,000 atoms for full MD). The velocity
of the indenter was chosen to be 5 m/s. Nanoindentation
simulations were conducted after a 200 ps equilibration
time over a period of about 400 ps with a time step of
1 fs. Each simulation was conducted on a standard desk-
top workstation and required about one day of calcula-
tion. The loading curves are presented in Fig. 4. Prior to
dislocation nucleation, the curves follow an elastic load-
ing path which is modified by the thermal dependence
of the elastic coefficients. As is seen in Fig. 4, the onset
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FIG. 3: Computational mesh at an indenter displacement of
1.5 nm at 100 K, showing details of the nonlocal, fully atom-
istic region under the indenter as a dissociated edge disloca-
tion nucleates. Elements between the repatoms are drawn,
rather than the repatoms at the element vertices, to accen-
tuate the deformation due to dislocation motion. Disloca-
tion nucleation occurs in two stages. A first dipole of §(112)
Shockley partial dislocations (SPD’s) is nucleated under the
surface (1 and 2). SPD 1 propagates into the bulk while SPD
2 reaches the surface, creating a stacking fault between them
as shown by the dashed line. Later a second dipole of SPD’s
(3 and 4) is nucleated at the same location as the first dipole.
SPD 3 propagates into the bulk to form a dissociated disloca-
tion with SPD 1. SPD 4 moves to the surface, removing the
stacking fault, and creating a step on the surface by combining
with SPD 2. As temperature increases this mechanism occurs
closer to the surface and on planes closer to the midline. The
inset shows the entire initial mesh.
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FIG. 4: Force vs indentation depth curve. The forces are aver-
aged over a period of 0.5 ps to reduce thermal noise. The slope
decreases with increasing temperature in accordance with the
evolution of elastic coefficients. More interestingly, disloca-
tion nucleation occurs at lower displacements with increasing
temperature.

of plasticity (i.e. dislocation nucleation) is affected by
the temperature. Analysis shows that nucleation occurs
under the indenter in the bulk in two stages as presented
in Fig. 3. A more comprehensive study will be published
elsewhere. We note that the zero temperature results re-
cover earlier results using the QC method in the absence
of thermal effects [14].

In this paper we have proposed a method for the dy-
namical simulation of crystalline solids at constant tem-
perature. It captures both atomistic mechanisms and
long range effects without the computational cost of full
atomistic simulations. We have shown that thermody-
namic properties are in good agreement with conven-
tional atomistic simulations. The ability of this method
to investigate effects of temperature and defects in real
structures has been demonstrated with the example of
nanoindentation. Though these results provide an en-
couraging first step in the direction of MD simulations
without all the atoms, there are a variety of interest-
ing issues still to be explored including: how to carry
out mesh adaption at finite temperatures, going beyond
the local harmonic approximation used to compute the
effective potential and application to other problems of
interest such as the temperature dependence of fracture.
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